FPGA and Cell Processor Performance Optimization for Brain-State-in-a Box (BSB) Cognitive Computing

Dr. Richard Linderman
Senior Scientist
AFRL/IF
Air Force Research Laboratory

Dr. Qing Wu and Dr. Qinru Qiu
Dept. of Electrical and Computer
Engineering
Binghamton University

maintaining the data needed, and co including suggestions for reducing t VA 22202-4302. Respondents shou does not display a currently valid O	ompleting and reviewing the collect this burden, to Washington Headqu Ild be aware that notwithstanding ar	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE AUG 2007 2. REPORT TYPE N/A			3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
FPGA and Cell Pro		e Optimization for l	Brain-State-in-a	5b. GRANT NUN	MBER
Box (BSB) Cognitive Computing			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMBER	
				5f. WORK UNIT	NUMBER
7. PERFORMING ORGANIZ Air Force Research	` '	` /		8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITOR	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publi		on unlimited			
13. SUPPLEMENTARY NO Symposium on Mul contains color imag	ticore and New Pro	ocessing Technologi	es August 13-14 2	007, The oriş	ginal document
14. ABSTRACT					
15. SUBJECT TERMS					
			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	a. REPORT b. ABSTRACT c. THIS PAGE			21	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

BSB Recall Operation

- X(t+1) and X(t) are N dimensional real vectors;
- A is an NxN connection matrix;
- α is a scalar constant feedback factor;
- λ is an inhibition decay constant;
- y is a nonzero constant if there is a need to maintain

BSB Training Operation

In Training, the NxN connection matrix A is modified as

$$\Delta A = lr * (X - AX) \otimes X$$

 $A = A + \Delta A$

- X is the normalized input training pattern;
- *Ir* is the Learning rate;
- ⊗ is the outer product of two vectors;

Application

Pattern recognition

10x10 black & white patterns

Input/state vector structure

$$X_{127} \sim X_{100}$$
:

Tags
$$X_{99} \sim X_0$$
 : Pixels

Example: Line Pattern "H1"

Total of 20 line patterns → 20 tag entries

Application 1: Line Patterns

Application 2: Alphabetic Patterns

Application 3: Symbol Patterns

Results

Training: 500 iterations

Recall:

	Number of iterations for successful recalls	Number of iterations for unsuccessful recalls
Exact training pattern without tag	8 ~ 11	N/A
Similar/partial pattern without tag	11 ~ 41	16 ~ 40

Generic Massively Parallel Cognitive Computing System

PE: Processing Element

LS: Local Store (local memory)

GM: Global Memory

Overall Processed Element Architecture

FPGA Resource Utilization

FPGA device: Xilinx Virtex II Pro XC2VP70

Target clock frequency: 100 MHz

Resources	Recall Design	Training Design	
Block Rams	129 (of 288)	129 (of 288)	
18-bit Multipliers	130 (of 328)	130 (of 328)	
LUTs	6127 (8%)	22716 (33%)	

FPGA Results and Comparison

Software: 2.0GHz Intel Xeon processor, 2GB RAM

Programmed and compiled with Intel Math Kernel Library 9.0

Hardware: 90 MHz clock frequency

Implementation	Time per Recall *(μs)	Equivalent FLOPS
Software	12.5	~2.6G
Hardware	1.69	~19.4G

Speed up by hardware: 7.4X

^{*} Average of 1,000,000 recalls

Software Solution on PS3

PlayStation 3

- Yellow dog Linux 5.0
- IBM CELL SDK 2.0
- Cell processor
- 256 MB RAM
- 60 GB hard drive
- Gigabit Ethernet
- •150 Gflops Single Precision Peak
- **\$499**

Cell Broadband Engine Processor

BEI Cell Broadband	Engine	Interface
--------------------	--------	-----------

EIB Element Interconnect Bus

FlexIO Rambus FlexIO Bus

IOIF I/O Interface

MIC Memory Interface Controller
PPE PowerPC Processor Element

RAM Resource Allocation Management

SPE Synergistic Processor Element XIO Rambus XDR I/O (XIO) cell

Storage and I/O Interface

DMA	Direct Memory Access
EIB	Element Interconnect Bus
LS	Local Storage
MFC	Memory Flow Controller
MMIO	Memory-Mapped I/O

Key Performance Numbers

- Clock Frequency
 - 3.2 GHz
- Peak Performance
 - 25.6 GFLOPS per SPE
- Main Memory
 - 256 MB Rambus XDR in PS3 and blades
 - 25.6 MB/s total memory bandwidth

Computation Flow

(a) Without double buffering

(b) With double buffering

DMA: Fetch coefficient matrix (128x128) from main memory to local store

M_V: Multiplication of coefficient matrix and state vector

SUM: Summation of partial products

MA: Multiply by Alpha and add state vector

SQ: Squash function

Performance Results

100,000 iterations on each SPE

Algorithm Configuratione			Runtime	Performance		
M_V	SUM	MA	SQ	DMA	(s)	(GFLOPS / SPE)
/	/	/	/	✓	3.22	10.3
/	/	✓	✓		2.32	14.3
/	\	/			2.20	15.0
/	/				2.14	15.3
/					1.79	18.1

Further Optimization

Memory I/O

- Only reached 12.2 GB/s in previous results
- Solution: Reconfigured and recompiled Linux kernel to support large memory page size
- Result: 24.4 GB/s memory I/O speed; 14.1 GFLOPS per SPE

SPE programming

- Operations in "SUM" step is not vectorizable.
- Solution: New algorithm that eliminates the "SUM" step.
- Goal: 18 GFLOPS per SPE

Conclusion

- Brain-state-in-a Box (BSB) cognitive models have been optimized for both FPGA and Cell implementations
- >19 GOPS demonstrated on 6M gate Virtex 2 FPGA on Heterogeneous HPC at Rome
- > 14 GFLOPS (55% of peak)demonstrated so far on each SPE of Cell BE
 - 85 GFLOPS on the 6 SPEs of the Cell in a PS3
 - 170 TFLOPS/\$M price performance at \$499 per PS3
- Expect to demonstrate 18 GFLOPS (71% of peak)
- Compute/IO ratio of ~20 adequate to balance Cell within PS3 for high performance
 - 23.4 ops/IO balances 150 GFLOPS to 25.6 GB/sec RDRAM
- FPGAs hard pressed to match the price or performance of the Cell